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Abstract-Categorizing historical sound speed profiles stems 

from the desire to map spatial and temporal variability. Sound 
speed variability correlates with environmental phenomena and 
is an indicator of changes in sonar performance. Sound speed 
maps will assist in planning more efficient environmental survey 
operations such as conductivity, temperature, depth (CTD) 
collections. Intrinsic profile attributes estimated directly from the 
profile, such as the mean, variance, and derivative values, are 
used in the clustering process separately or in conjunction with 
extrinsic attributes such as location and ocean floor depth. 
Examples are used to demonstrate that the underlying spatial 
boundaries of the cluster groupings identify regions where sound 
speed profiles are consistent. The process is easily tailored to 
multiple clustering based upon the spatial and temporal scales of 
interest or on generic properties of the individual profile. The 
sensitivity of the cluster boundaries and group statistics to the 
addition of new profiles, or to changes in temporal and spatial 
scale, defines a new environmental characterization. 

I.  INTRODUCTION 

 Sound speed varies strongly with temperature, depth, and 
salinity. Ocean temperature and salinity vary under many 
forcing functions including depth, tides, wind stress, waves, 
solar heating, atmospheric pressure, current, vorticity, and 
Earth’s rotation. Thus, sound speed is constantly evolving 
over large spatial and temporal scales spanning turbulent 
scales (less than a second and smaller than a meter) to 
synoptic scales (days and months over distances of tens of 
thousands of meters). These large scales of variability make 
unconditional categorization improbable. 
 Classes or categories are used to describe similarities and 
differences in a way that helps understanding and describes 
relationships. Categorizing sound speed profiles stems from 
the desire to map sound speed spatial variability. The principal 
objective is to identify geographical regions or provinces 
where sound speed profiles are consistent over some defined 
set of attributes and to quantify sound speed variability within 
each group and between each group. In addition, the 
geographic location, extent, and separation of cluster groups 
would be interesting in themselves and provide new 
descriptions of variability that comprise the assimilated results 
of multiple forcing functions. Ideally these categories or 
cluster groups would be solely based on profile attributes; 
however, the dependence of sound speed profiles on so many 
factors and environmental effects related to location and time 

implies that a combination of intrinsic profile characteristics 
and extrinsic spatial and temporal indicators are useful for 
categorizing profile data. Sound speed profile clustering can 
provide new insight into historical sound speed variability. 
Maps of sound speed changes identify potential sonar 
performance changes. Sound speed cluster maps can be easily 
tailored for a wide range of temporal scales and spatial scales.  
 The U.S. Navy maintains a temperature–salinity–depth 
database entitled the Master Oceanographic Observation Data 
Set (MOODS), which contains more than 8 million profiles 
from around the world spanning 125 years. The MOODS 
database contains public domain profiles derived from Navy 
and from the National Oceanographic Data Center (NODC), a 
repository and dissemination facility for worldwide 
oceanographic data under the auspices of the National Oceanic 
and Atmospheric Administration (NOAA) [1]. As used herein, 
each profile in the MOODS database is considered to be of 
equal value with all other profiles. Clustering does not 
average, synthesize, filter, or fuse profiles, but it does identify 
a group of profiles that would be used for such analysis. 

II.  BACKGROUND 

In everyday experience, the spatial distance from one point  
to another in a three-dimensional plane has two components, 
one for each plane. The total distance between the points is 
given by an accumulation of the individual distances. This 
concept of distance is easily extended into n-dimensions, one 
difference for each dimension, followed by accumulation. In 
clustering, the dimensionality is determined by the number of 
attributes or components that are used to characterize the 
profile. Thus, a profile of sound speed as a function of depth is 
clustered based on the n-dimensional vector of attributes 
derived from the profile. Distance will be the metric used to 
assign profiles to a cluster group and assess the quality of the 
groupings. Important distances are from one profile to the 
center of a cluster, the distance between clusters, and the 
distance between one profile and another. 

Hierarchical methods form a multilevel hierarchy, where 
clusters at a lower level (leaf nodes) are joined to form higher 
level clusters (branches). This hierarchy forms a dendrogram, 
a tree-like structure, that shows the links in terms of distance 
and provides flexibility in choosing the number of clusters 
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best suited for that hierarchy. The process begins by 
computing the distance from each profile to every other profile 
using the vector of attributes. The two profiles with the 
smallest distance are linked first to form a single cluster. The 
hierarchy is grown by successive linking based on the smallest 
separation until all clusters are linked into a single cluster 
(root). The separation distances reveal patterns that identify 
natural groupings that can be used to determine the 
appropriate number of clusters and identify profiles that are 
greatly different from the other profiles. MATLAB© [2] was 
used to perform the clustering.* The cluster results are also 
dependent upon the attributes used to compute distances. The 
choice of attributes is somewhat subjective. The cophenetic 
correlation coefficient (CCC) is the metric for the strength of 
the separation between clusters for the hierarchical method. 
The cophenetic correlation for a dendrogram is the linear 
correlation coefficient between the cophenetic distances 
obtained from the tree and the original distances used to 
construct the tree. The cophenetic distance is the height of the 
link that joins two clusters and is used to represent how well 
dendrograms model the variability in observations [2]. This 
value should be close to 1 for a high-quality solution. 

Mandelberg and Frizzell-Makowski used hierarchical 
clustering to province sound speed profiles obtained from the 
Naval Oceanographic Office’s General Digital Environmental 
Model (GDEM) database in 2000 [3]. Their goal was to 
reduce the number of profiles needed for acoustic propagation 
modeling in the North Atlantic and North Pacific oceans. They 
correlated computed provinces with major oceanographic 
features and circulations. Similar large-scale correlation is 
used here to assess cluster results. 

III.  ATTRIBUTES FOR CLUSTERING 

The multi-dimensionality used to cluster profiles results in a 
wide range of numerical values or a wide range of magnitude 
scales. Normalizing often improves the cluster results, and 
many normalizing methods are available. Everitt et al. [4] 
recommend normalizing by the range of the values based on 
anecdotal reports of multiple users. Our limited testing with 
various normalizations concurred that the range normalization 
yields the strongest clustering. A partial list of intrinsic 
attributes used in clustering includes 
 • Estimates of the mixed layer depth 
 • Estimates of surface speed 
 • Relative changes in sound speed 
 • Integrated values of sound speed 
 • Central moments estimated from the profile 
 • Autocorrelation estimates from the profile 
First and second derivatives of the profile are estimated using 
smoothed forward and backward divided differences. From 
these derivatives, additional attributes are obtained including 
scintillation and the depth at which the maximum derivative 
occurs. 

Adaptive Profile Clustering 
One key to robust clustering is principal component analysis 

(PCA) [4]. PCA is a method for determining which attributes 
contain the greatest amount of statistically independent 
information. By choosing attributes that contribute more to the 
principal components, clustering is optimized for that set of 
profile data. The other key is multiple clustering and ranking 
results. A process for adaptive profile clustering in evolving 
environments (APCEE) was developed based on PCA and 
multiple clustering using different combinations of attributes 
(trials). The amount of time required to complete the process 
and generate maps is ill-defined due to the size of the profile 
data set being clustered. The overall process is generalized in 
Fig. 1. In this paper, five trials, some with and some without 
PCA, are used to determine the variability in the clustering 
results. These five trials are ranked to determine the best 
result. The trials are identified by subsets of attributes as 
follows: 
 Trial 1: all attributes (no PCA) 
 Trial 2: intrinsic attributes only (no PCA) 
 Trial 3: all attributes are used in PCA 
 Trial 4: only intrinsic attributes used in PCA 
 Trial 5: a fixed subset of attributes used in PCA 

An increase in the value of the CCC indicates greater 
overall separation between clusters. The increase is 
meaningful only if it occurs above the linkage threshold value 
being used to cluster. Thus, the trial with the highest CCC 
value is normally the better choice. However, several trials 
may give the same general result. The choice for the number 
of clusters is less obvious. A process based on the nulls in the 
derivative of the link distances was developed to determine 
“natural” thresholds for the number of clusters. 

 
Figure 1. Process outline for clustering sound velocity profiles. 
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IV.  MAY– GULF OF MEXICO EXAMPLE 

Data from the MOODS database were extracted under the 
dissemination heading Unclassified Public Release. The 1284 
profiles span the upper-half of the Gulf of Mexico for the 
month of May between the years 1971 and 2006. The 
clustering results from all trials with CCC values greater than 
an arbitrary threshold of 0.85 were kept for further 
examination. For this set of profiles, clustering with Trial 1 
and Trial 4 did not yield CCC values above 0.85. Thus, based 
on the trials for this subset of profiles, metadata play an 
important role in creating clusters, and PCA analysis improved 
the strength of the clustering. The CCC value depends only on 
linkage distances and is independent of the number of clusters. 
Trial 5 gave the overall highest CCC; however, the span of 
CCC values was small, less than 10%, indicating that any of 
these five results could give similar clustering. Two 
discussions ensue: (1) using the dendrogram to determine an 
appropriate number of natural clusters within a single trial, 
and (2) comparing the clusters from different trials for a near-
constant number of clusters. 

Fig. 2 shows a dendrogram for the trial with the highest 
CCC value, representing the strongest clustering (the greatest 
overall distances between linkages). Each profile is 
represented along the x-axis of the dendrogram at the link 
distance of zero (y-axis). The separation between any two 
profiles (or clusters) is the sum of the two cophenetic (or link) 
distances (one up and one down), where the profiles (or 
clusters) are joined by a horizontal bar. The larger the sum, the 
more separated the profiles (or clusters). 

In Fig. 2, the dendrogram is replicated four times and color-
coded based on different linkage threshold values (the dotted 
horizontal black lines) that determine the sorting of profiles 
into cluster groups. The number of resulting clusters is given 
at the top of graph next to the keyword “mynoc.” The first 
threshold (leftmost) gives 5 clusters; the fourth gives 40 
clusters. Due to the size of the plot, not every cluster is easily 
visible, nor are the individual 1284 profiles that appear at the 
very bottom of each dendrogram. 

The leftmost dendrogram has five cluster groups; however, 
79% of the profiles falls into one cluster group (the red one on 
the right-hand side of the leftmost dendrogram). Approxi-
mately 19% of the profiles falls in the second largest group, 
and the other three groups together represent about 2.5% of 
the profiles and are too small to be seen clearly at this scale. 
The three groups of the profiles are not outliers, only profiles 
separated by larger link distances to the other profiles. These 
low-density groups may indicate unique variability in the 
sound speed profiles or the need for more or fewer cluster 
groups. The links above the threshold are also revealing. The 
solid horizontal bars indicate the threshold value that will 
separate the profiles into distinct clusters. Where vertical 
distances are larger, profiles are more strongly separated. 
Where vertical links are short, cascading consistently with 
little vertical separation, profiles are weakly separated. Thus, 
many deep vertical nulls are a sign of cluster group separation, 

and short vertical links indicate a condition of diminishing 
returns on the optimal number of cluster groups. 

The dendrogram provides the physical oceanographer with 
the visual clues for setting the thresholds based on experience 
and intuition. The four dendrograms in Fig. 2 are color-coded 
at lower thresholds (dashed horizontal lines) that separate 
profiles into larger numbers of cluster groups. Some groups 
have many profiles and some have few. The threshold value of 
the fourth dendrogram results in 40 distinct cluster groups; 
however, 54% of the profiles still fall into one cluster group 
near the middle. The second largest cluster has about 18% of 
the profiles, and there are 5 groups with 3 to 10% of the total 
profiles. Several more groups contain less that 1% of the 
profiles each. Multiple thresholding reveals that although 
many groups can be easily assigned, the bulk of the profiles 
are still assigned to one group. This distribution of profiles 
among cluster groups tends to support the conviction that 
larger numbers of cluster groups are not necessary. A higher 
value (between 20 and 40) is more appropriate for identifying 
anomalous profiles and allows the analyst to identify extreme 
profile variance. A lower value (between 10 and 20) is useful 
for identifying major profile trends and characteristics. 
Dendrograms provide valuable clues to the upper and lower 
limits of the natural numbers of clusters that are appropriate to 
these profiles. Different trials or cluster parameters will 
provide different dendrograms with different CCC values. 

Figure 2. Identical dendrograms color-coded by threshold link 
values that determine the number of clusters.  



 

 

A. Profile Cluster Groupings 
Comparisons of dendrograms for different trials will follow 

plots of the group profiles and a map of cluster groups. Fig. 3 
shows the profiles belonging to the four largest cluster groups 
from the dendrogram thresholded to yield 18 cluster group 
(mynoc 18 in Fig. 2). Cluster 9 contains approximately 68% of 
the profiles. Cluster 14 profiles are nearly isovelocity even 
though speeds range from 1500 to 1535 m/s. A positive result 
is that although the speeds and depth vary and overlap to some 
degree, the distinct shapes of the profiles are accurately 
separated. The profiles in cluster 4 exhibit more curvature and 
are visibly different from other clusters. The profiles in cluster 
group 11 are shallow, less than 12 m, and although few, they 
too are visibly different from the other profile groups. These 
are encouraging results. 

Variability still exists in each cluster group in Fig. 3. This is 
seen in the sound speed at zero depth and in thermocline 
structures of cluster 4. The variability within a single cluster 
group can be increased by raising the link threshold (reducing 
the total number of clusters), or it can be decreased by adding 
more cluster groups (reducing the link threshold). Thus, if the 
analyst has a priori requirements for sound speed variability, 
dendrogram thresholding can accommodate such constraints. 

 

 
Figure 3. Cluster groups from the second dendrogram in Fig. 2. 

 
 

B. Sound Velocity Profile Maps 
Fig. 4 is a profile map color-coded by cluster group (top)and 

a bathymetry map from NOAA’s web site (bottom) [5]. Only 
clusters containing more than 1% of the total number of 
profiles are included. For this example, that cluster group 
density restriction limits the map to the four clusters shown in 
Fig. 3. The map is intuitively reasonable: the profiles in 
Mobile Bay form the smallest group (cluster 11), and the 

profiles near the continental shelf edge form the largest group 
(cluster 9). The second largest cluster is scattered about the 
region in longitude, but always closer to the coastline. A 
distinct cluster group or province appears off the coast of 
Texas. This map has intuitive sensibility in regard to the 
bathymetry, the differing bottom types in Florida and Texas, 
and the different profiles typical of near shore and offshore 
due to temperature and salinity. Similar banding is often seen 
in satellite sea surface temperature imagery. 

Determining the number of cluster groups depends 
somewhat on the rationale for clustering, the number of 
profiles, the geospatial scale, and time extent of the data being 
clustered. Larger linkage threshold values yield the smaller 
numbers of cluster groups. Fig. 4 (top) and Fig. 5 show three 
clear baseline groups: one for large bays, one for inshore, and 
one near the edge of the continental shelf.  Dendrogram 
thresholding provides flexibility in determining the level of 
profile variability and accommodates clustering in relation to 
spatial or temporal extent or mission objectives like counter-
detection or active searching. However, this flexibility is 
limited by the number of profiles available for clustering. In 
Fig. 5, the number of high-density cluster groups has been 
reduced from three to two and fails to resolve variability along 
the Texas and Florida coasts. 

 

 
Figure 4. Cluster map from the third dendrogram in Fig. 2 (top) and relative 

bathymetry from NOAA web site (bottom) [5]. 
 
 

Figure 5. Cluster map from the second dendrogram in Fig. 2. 



 

 

V.  MULTIPLE TRIAL COMPARISONS 

Results using different profile attributes are compared and 
delineated by a trial number. Each dendrogram was 
thresholded to yield approximately 18 groups to match Fig. 4. 
To visibly compare the dendrograms shown in Fig. 6, start at 
the top, where all the profile groups form one cluster, and 
compare how groups separate while moving down the vertical 
link scale (y-axis). The color codes are assigned based on 
cluster group number and not on cluster group density. For 
each of the dendrograms, individual profiles are not in the 
same horizontal order and the linkages to other profiles are not 
the same. Differences in symmetry and cascading links above 
the threshold (dashed horizontal line) are important effects 
from trials using differing attributes. Differences below the 
threshold, the color-coded structures, show less change. A 
color-coded structure in one trial often shows similar 
symmetry and cascading to a different colored structure in 
another trial. Comparing the linkage between any two profiles 
cannot be done at this plotting scale; however, that 
information is available in the links database generated by the 
clustering algorithm. Higher CCC values require lower 
threshold values, which creates more cluster groups. If one 
were to keep threshold values relatively constant, for example 
around 1.2, then the number of clusters for each of the 
dendrogram would vary (~8, ~41, and ~28 in left-to-right 
order for Fig. 6). Thus, profile attributes used for clustering 
significantly affect the dendrogram linkage structure and the 
order of the cluster groups. Each dendrogram arranges the 
individual profiles in a unique horizontal order; however, 
substructures in one dendrogram may be similar to 
substructures in another. In Fig. 6 three major categories arise 
for each dendrogram. For the sake of brevity, the comparisons 
of the profiles in each individual cluster group and cluster 
maps are omitted. The four largest cluster groups from each 
dendrogram have different percentages of the profiles, given 
in Table I, but the profile shapes are similar to those in Fig. 3. 

TABLE I 
COMPARISON OF PROFILE DENSITIES FOR THE FOUR HIGHEST POPULATED 
CLUSTER GROUPS FROM THREE DIFFERENT TRIALS FOR MAY PROFILES. 

Trial 1st highest % 
of profiles 

2nd highest % 
of profiles 

3rd highest % 
of profiles 

4th highest % 
of profiles 

2   5 68% 18% 9% 2% 
2   3 55% 38% 2% 2% 
3   2 57% 31% 6% 2% 

The cluster maps are not shown, but are similar to Fig. 4. 
All three trials cluster the Mobile Bay profiles uniquely. All 
three trials delineate the inshore profiles from the shelf-edge 
profiles. The profiles nearest the shelf edge are nearly 
identical for all three trials, as are the inshore profiles. 
Differences among trials occur primarily in the boundary of 
the near-shore and shelf-edge profiles. The consistency in the 
inshore and shelf-edge cluster groups by multiple trials 

indicates that sound speed profile clustering is reliable and 
consistent. 

VI.  NOVEMBER– MULTIPLE TRIAL COMPARISONS 

Cluster maps can reveal sound velocity changes over 
varying time scales. This section examines cluster results for 
sound speed profiles for the month of November. Color codes 
identify cluster group number for a single trial. The color 
palette may match other trials, but no correspondence exists 
between cluster groups from different trials. The trial numbers 
correspond to those previously defined. The top map 
(thresholded at eight cluster groups) shown in Fig. 7 is very 
similar to the May maps (Figs. 4 and 5). The Mobile Bay data 
are clustered separately, and the inshore profile group is 
separated from the shelf-edge group. The same general trends 
are apparent in the lower map (20 cluster groups). As 
expected, with more clusters comes more variability, 
especially near the shelf edge. It also shows more sound speed 
variability for the Florida coast than previous examples with 
fewer clusters, but similar variability on the Texas coast. 

 

 
 

Figure 6. Dendrograms from three different cluster trials.



 

 

 
 

The cluster group profiles for November highlight one utility 
of sound speed clustering. The profile groups in Fig. 8 exhibit 
large significant differences compared to the May profiles 
(Fig. 3). The May profiles are more linear with depth, and 
groups have varying slopes, including the isovelocity. 
November profiles all show more curvature. Group 2 in Fig. 8 
is somewhat misleading because shallow profiles are 
combined with deeper profiles that shape a stronger 
appearance of concavity near the surface than may actually 
exist. In contrast to the May profiles, there is also a lack of an 
isovelocity profile group. This finding may indicate that eight 
cluster groups may be insufficient. 

The lower map in Fig. 7 stems from a separate trial with 
slightly different attributes and a different threshold. The four 
largest profile groups from the lower map in Fig. 7 are 
presented in Fig. 9 and provide a different segregation and 
order of profile groups than in Fig. 8. Both represent natural 
thresholds based on the dendrogram linkage, and both are 
correct (they are derived from the different dendrograms). 
Choosing between dendrograms can be automated simply 
based on CCC value. A physical oceanographer may choose 
based on external factors, based on the other types of 
oceanographic data, based on the distribution of profiles 
among the four groups, or based on intracluster variability for 
each group. Cluster groups can be used to provide planners 
information other than geographical cluster maps. Each group 
can be further processed to provide an expected sound speed 
profile for each cluster group, a measure of the variability of 
sound speed in each cluster group, a range of expected sound 
speed profiles, and the variability between geospatial cluster 
groups. 

 
Figure 8. Hierarchical profiles of cluster groups corresponding to upper map 

in Fig. 7. (Compare with Fig. 3.) 
 

 
Figure 9. Hierarchical profiles of cluster groups corresponding to lower map 

in Fig. 7. (Compare with Fig. 3 and Fig. 8.) 

VII.  SEASONAL CLUSTER GROUP COMPARISONS 

Until now, clustering took place after profiles were culled 
for a particular region and time in order to demonstrate spatial 
clustering and reasonable agreement with general oceano-
graphic features. Culling allows an analyst to select the data 
most appropriate to mission objectives. 

This last section shows that clustering performs well, even 
when the data set is both spatially and temporally diverse and 
even if longer term oceanographic processes are involved. 
Sound speed profiles are clustered as in previous examples but 
include the entire data set spanning all months and years. 

Figure 7.  November cluster maps for multiple trials. The top map is 
thresholded to eight cluster groups; the bottom map to 20 groups. 

(Compare with Figs. 4 and 5.) 



 

 

Cluster groups are formed and color-coded independent of 
month. Cluster groups are then plotted as a function of 
latitude, longitude, and month. This allows easier comparison 
of profile changes during a one-year cycle. Other time cycles 
are easily accommodated. The dendrogram threshold yielded 
17 total cluster groups, as shown in Fig. 10, resulting in 11 
groups with significant profile density.  Fig. 11 shows the 
cluster map as a function of month. Each color is a profile 
group so that changes as a function of month and location are 
readily visible. The Texas coast shows more temporal 
variability than does the Florida coast. June seems to be the 
most stable month. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 10. Hierarchical linkages of cluster groups for all 12 months. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 11. Cluster map as a function of month. 

VIII.  SUMMARY 

Hierarchical clustering methods were applied to 
NAVOCEANO’s MOODS database to categorize sound speed 
profiles and use group boundaries to identify regions of 
significant sound speed changes. Categories were determined 
from a combination of intrinsic profile characteristics and 
metadata from each profile. The APCEE process uses 
clustering with different combinations of attributes and ranks 
results to generate a cluster map. The process allowed 
clustering to be optimized to the spatial range and temporal 
scales of interest. The process proved to be adaptive and 
robust due to the use of principal component analysis and 
clustering with multiple combinations of attributes (however, 
some combinations did give low CCC values). 

Cluster maps can help survey planners optimize ship CTD  
sampling operations by indicating the location, time frame, 
and magnitude of historic sound speed changes. Once 
identified, the profiles from each cluster group can be further 
processed to provide statistical information such as an 
expected sound speed profile, a measure of the variability in 
each cluster group, and the variability between cluster groups. 
Clustering also identifies unique individual profiles. 

Although PCA is used to improve the linear independence 
among the attributes used for clustering, linear independence 
is not assured, and such affects were not pursued. Multiple 
clustering with different profile attributes gave reasonably 
consistent CCC values, and maps showed correlation with 
local oceanographic conditions. No attempt was made to 
determine the minimum number of profiles needed to obtain a 
strong cluster result. One limitation encountered was the 
requirement for a multiple number of trials and attributes to 
ensure a high-quality cluster result. Certainly part of that is the 
inherent variability in sound speed profiles; however, 
improvements in defining attributes should improve results 
and reduce the number of trials. High variability in either 
surface temperature or water column depth always yields 
loose clusters; therefore, additional attributes to mitigate this 
issue are needed. One possible attribute would relate the time 
of the profile to the time of the local tidal cycle. 
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